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Abstract. For vectors X, Y ∈ R
n, we say X is left matrix majorized by

Y and write X ≺� Y if for some row stochastic matrix R, X = RY. Also,

we write X ∼� Y, when X ≺� Y ≺� X. A linear operator T : R
p → R

n is

said to be a linear preserver of a given relation ≺ if X ≺ Y on R
p implies

that TX ≺ TY on R
n. In this note we study linear preservers of ∼� from

R
p to R

n. In particular, we characterize all linear preservers of ∼� from

R
2 to R

n, and also, all linear preservers of ∼� from R
p to R

p.
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1. Introduction

Let Mnm be the algebra of all n×m real matrices, and the usual notation R
n,

for n × 1 real vectors. A matrix R = [rij ] ∈ Mnm is called a row stochastic
matrix if rij ≥ 0 and Σm

k=1rik = 1 for all i, j. For vectors X, Y ∈ R
n, we

say X is left (resp. right) matrix majorized by Y and write X ≺� Y (resp.
X ≺r Y ) if for some row stochastic matrix R, X = RY (resp. X = Y R).
For more information about right and left matrix majorization and some other
majorizations, we refer to [1], [5] and [11]. Also for X, Y ∈ R

n, we write
X ∼� Y, if X ≺� Y ≺� X.
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A linear operator T : R
p → R

n is said to be a linear preserver of a given relation
≺ if X ≺ Y on R

p implies that TX ≺ TY on R
n. Linear preservers of ≺� and

≺r from R
n to R

n are fully characterized in [6] and [7]. For more information
about linear preservers of majorization we refer the reader to [1]-[4] and [10]. [8]
introduced an extension of this preservers which is the characterization of linear
preservers of ≺� from R

p to R
n, such that p and n are not necessarily equal.

Also [8] characterized the structure of theses linear preservers of ≺� for p ≤
n ≤ p(p − 1). In [9], by a geometric approach one can see the characterization
of linear preservers of ≺� from R

p to R
n without any additional conditions on p

and n. Here we focus on this method. And in the final section we characterize
linear preserver of ∼� from R

p to R
n, with some restrictions on p and n.

We shall use the following conventions throughout the paper, Let T : R
p → R

n

be a nonzero linear operator and let [T ] = [tij ] denotes the matrix repre-
sentation of T with respect to the standard bases {e1, e2, . . . , ep} of R

p and
{f1, f2, . . . , fn} of R

n. If p = 1, then all linear operators on R
1 are preservers of

≺�. Thus, we assume p ≥ 2. Let Ai be mi×p matrices, i = 1, . . . , k. We use the
notation [A1/A2/ . . . /Ak] to denote the corresponding (m1 +m2 + . . .+mk)×p

matrix. Denote

a : = max{tij | 1 ≤ i ≤ n, 1 ≤ j ≤ p},
b : = min{tij | 1 ≤ i ≤ n, 1 ≤ j ≤ p}.(1)

We also use the notation P for the permutation matrix such that P (ei) = ei+1,

1 ≤ i ≤ p − 1, P (ep) = e1. Let I denote the p × p identity matrix, and let
r, s ∈ R be such that rs < 0. Define the p(p − 1) × p matrix Pp(r, s) =
[P1/P2/ . . . /Pp−1] where Pj = rI + sP j, for all j = 1, 2, . . . , p − 1. It is clear
that up to a row permutation the matrices Pp(r, s) and Pp(s, r) are equal. Also
define Pp(r, 0) := rI, Pp(0, s) := sI and Pp(0, 0) as 1 × p zero matrix.
Let T : R

2 → R
n be a linear operator and let [T ] = [T1/ . . . /Tn], where

Ti = [ti1, ti2], 1 ≤ i ≤ n. Let

Δ := Conv({(ti1, ti2), (ti2, ti1), 1 ≤ i ≤ n}) ⊆ R
2,(2)

where Conv(A) denotes the convex hull of a set A. Also, let C(T ) denotes the
set of all corners of Δ.
Now, we study the characterization of linear preservers of ≺� from Rp to Rn.

Theorem 1.1. Let T : R
2 → R

n be a linear operator. Then, T is a linear
preserver of ≺� if and only if P2(x, y) is a sub-matrix of [T ] and xy ≤ 0 for all
(x, y) ∈ C(T ).

Now let p ≥ 3, we study all linear preservers T : R
p → R

n of ≺� . First we need
some definitions.
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Definition 1.2. Let T : R
p → R

n be a linear operator and let [T ] = [T1/ . . . /Tn].
Define

Ω := Conv({Ti = (ti1, . . . , tip), 1 ≤ i ≤ n}) ⊆ R
p.

Also, let C(T ) be the set of all corners of Ω.

Definition 1.3. Let T : R
p → R

n be a linear operator. We denote by Pi

(resp. Ni) the sum of the non negative (resp. nonpositive) entries in the ith

row of [T ]. If all the entries in the ith row are positive (resp. negative), we
define Ni = 0 (resp. Pi = 0).

Definition 1.4. Let T : R
p → R

n be a linear operator. Define

Δ : = Conv({(Pi, Ni), (Ni, Pi) : 1 ≤ i ≤ n}),
E(T ) : = {(Pi, Ni) : (Pi, Ni) is a corner of Δ},

where Pi, Ni are as in Definition 1.3.

Theorem 1.5. [7, Theorem 4.6] Let T and E(T ) be as in Definition 1.4. Then
T preserves ≺� if and only if Pp(α, β) is a sub-matrix of [T ] for all (α, β) ∈
E(T ).

For X, Y ∈ R
p, we define X ∼� Y, when X ≺� Y ≺� X. This paper consists of

two sections. First section characterizes linear preservers of ∼� from R
2 to R

n.

In the second section we obtain a key necessary condition for T : R
p → R

n(p ≥
3), to be a linear preserver of ∼�, in particular we prove p ≤ n, when p ≥ 3. At
first we have some lemmas.

Lemma 1.6. Let X, Y ∈ R
p, X ∼� Y if and only if max X = maxY and

min X = min Y where the maximum and minimum are taken over the entries
of X and Y.

Proof. By [9, Remark 3.1] we know X ≺� Y if and only if min Y ≤ min X ≤
maxX ≤ maxY. Hence X ≺� Y ≺� X if and only if maxX = max Y and
min X = min Y.

Lemma 1.7. Let T : R
p → R

n be a linear operator such that min TX =
min TY for all X ∼� Y. Then T is a linear preserver of ∼� .

Proof. If X ∼� Y then −X ∼� −Y and hence min−TX = min−TY, which
implies max TX = maxTY.

Lemma 1.8. If T : R
p → R

n is a linear preserver of ≺�, then T is a linear
preserver of ∼� .

Proof. Let T be a linear preserver of ≺� and X ≺� Y ≺� X, for some X, Y ∈
R

p. Hence TX ≺� TY ≺� TX which is TX ∼� TY.

The converse of Lemma 1.8 is not true, we will show it in the next section .
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2. Linear Preservers on R
2

We know that T is a linear preserver of ∼� if and only if αT is a linear preserver
of ∼� for any nonzero real number α. Without loss of generality we can assume
| b |≤ a. Also throughout the remainder of this paper we fix the notation P(n)
for all n × n permutation matrices. In this section we shall characterize all
linear preservers T : R

2 → R
n of ∼� . We have the following lemma.

Lemma 2.1. (i) Let X, Y ∈ R
2, then X ∼� Y if and only if X = PY for some

P ∈ P(2).
(ii) Let T : R

2 → R
n (n ≤ 2) be a linear operator then T is a preserver of ∼�

if and only if for all X ∈ R
2 and P ∈ P(2), there exists a permutation matrix

Q ∈ P(n) such that T (PX) = QT (X).

Proof. (i) Let X, Y ∈ R
2, by Lemma 1.6 X ∼� Y if and only if maxX = max Y

and minX = min Y. Hence X = PY for some P ∈ P(2).
(ii) Let X ∈ R

2, by part (i) T is a linear preserver of ∼� if and only if T (X) ∼�

T (PX) for every permutation matrix P ∈ P(2). Now by part (i), if T (X) ∼�

T (PX) then T (PX) = QT (X) for some suitable permutation matrix Q.

Proposition 2.2. Let T : R
2 → R be a linear operator. Then T preserves ∼�

if and only if [T ] = [a a], for some a ∈ R.

Proof. Let T preserve ∼�, since e1 ∼� e2 then maxTe1 = maxTe2 and
min Te1 = min Te2. Hence [T ] = [a a], a ∈ R. Conversely, let [T ] = [a a] for
some a ∈ R hence T (X) = ax1 + ax2 = ax2 + ax1 = T (PX), for all X ∈ R

2

and for all P ∈ P(2). Therefore T is a linear preserver of ∼� .

Theorem 2.3. Let T : R
2 → R

2 be a linear operator. T preserves ∼�, if and

only if [T ] =
[

a b

b a

]
or [T ] =

[
a a

b b

]
, for some a, b ∈ R.

Proof. Let T be a linear preserver of ∼� . Since e1 ∼� e2, then Te1 ∼� Te2

and hence Te1 = PTe2 for some permutation matrix P. Therefore Te1 = Te2

or Te1 = PTe2, (P 	= I). Which implies [T ] =
[

a a

b b

]
or [T ] =

[
a b

b a

]
.

Conversely it is easy to check that T (X) = T (PX), for all X ∈ R
2 and every

2 × 2 permutation matrix P. Hence T preserves ∼� .

The following example shows that the converse of Lemma 1.8 is not true.

Example 2.4. Let A =
[

2 1
1 2

]
, by Theorem 2.3, A is a linear preserver of

∼�, but by Theorem 1.1, A is not a linear preserver of ≺� .

Definition 2.5. Let x, y ∈ R, define Q2(x, y) =
[

x y

y x

]
, if x 	= y and

Q2(x, x) = [x x].
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Theorem 2.6. Let T : R
2 → R

n be a linear operator. Then T is a linear
preserver of ∼� if and only if Q2(x, y) is a sub-matrix of [T ], for all (x, y) ∈
C(T ), where C(T ) denote the set of all corners of Δ as in (2).

Proof. Let T be a linear preserver of ∼� and (x, y) ∈ C(T ), x 	= y. Let Ti =
(ti1, ti2) = (x, y). Then there exist real numbers m, M such that mti1 +Mti2 <

mtj1+Mtj2, j 	= i. Choose ε0 > 0 small enough so that (m−ε)ti1+(M+ε)ti2 <

(m−ε)tj1+(M+ε)tj2, j 	= i, 0 < ε ≤ ε0. Since (M+ε, m−ε)t ∼� (m−ε, M+ε)t,
T (M + ε, m − ε)t ∼� T (m − ε, M + ε)t. Hence, for all 0 < ε ≤ ε0, there exist
1 ≤ k ≤ n such that Tk = (tk1, tk2) ∈ C(T ) and (m − ε)ti1 + (M + ε)ti2 =
min T (m− ε, M + ε)t = min T (M + ε, m− ε)t = (M + ε)tk1 +(m− ε)tk2. Since
k ∈ {1, 2, . . . , n} is a finite set, there exists k such that tk1 = ti2 and tk2 = ti1.
Therefore, Q2(x, y) is a sub-matrix of [T ], .
Conversely, let Q2(x, y) be a sub-matrix of [T ] for all (x, y) ∈ C(T ). Define the
linear operator T̂ on R2 such that [T̂ ] = [Q2(x1, y1)/ · · · /Q2(xr , yr)], where
(xi, yi) ∈ C(T ), 1 ≤ i ≤ r. By elementary convex analysis, we know that
maxT (X) = max T̂ (X) and minT (X) = min T̂ (X) for all X ∈ R

2. Hence it is
enough to show that T̂ is a linear preserver of ≺� . By Theorems 2.2 and 2.3,
each Q2(xi, yi) is a linear preserver of ∼�. Thus, T̂ is a linear preserver of ∼�.

3. Linear Preservers on R
p

In this section we consider linear operators T : R
p → R

n for p ≥ 3.

Lemma 3.1. Let T : R
p → R

n, p ≥ 3 be a linear preserver of ∼� and let a,b
are as in (1). Then the following assertions hold,
(i) a = maxTei and b = min Tei for all i = 1, . . . , n. In particular every col-
umn of [T ] contains at least one entry equal to a and at least one entry equal
to b.

(ii) If tij = a for some i, j then tik ≤ 0, for all k 	= j. Also if tij = b for some
i, j then tik ≥ 0, for all k 	= j.

(iii) p ≤ n.

Proof. (i) We have ei ∼� ej for all 1 ≤ i, j ≤ p, hence Tei ∼� Tej which
implies that maxTei = maxTej and minTei = min Tej, for all 1 ≤ i, j ≤ p.

By (1), a = maxTei and b = min Tei, for all 1 ≤ i ≤ p.

(ii) For p ≥ 3, and for all r, s ∈ {1, . . . , p}, r 	= s, we know (er + es) ∼� er

so (Ter + Tes) ∼� Ter. Therefore, if the ith of [T ] contains an entry equal
to a (resp. b), then all other entries of the ith row of [T ] are nonpositive
(resp. nonnegative).
(iii) By parts (i) and (ii) we know that each column of [T ] has at least one
entry equal to a and each row of [T ] has at most one entry equal to a, hence
p ≤ n.

Now, we state the key theorem of this section.
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Theorem 3.2. Let T : R
p → R

n be a linear preserver of ∼� and let a and b
be as in (1). Then there exist 0 ≤ α ≤ a and b ≤ β ≤ 0 such that Pp(a, β) and
Pp(α,b) are sub-matrices of [T ].

Proof. Let [T ] = [tij ], by Lemma 3.1 we know that in each column of [T ] there
is at least one entry equal to a and at least one entry equal to b. Let 1 ≤ k ≤ p,

define Ik = {i : 1 ≤ i ≤ n, tik = a} and Jk = {j : 1 ≤ j ≤ n, tjk = b.} Since
T is a linear preserver of ∼�, the sets Ik and Jk are nonempty. Also, Lemma
3.1 follows that a row containing an entry a (resp. b) contains other positive
(resp. negative) entries. That is til ≤ 0 and tjl ≥ 0 whenever i ∈ Ik, j ∈ Jk

and l 	= k. For i ∈ Ik and j ∈ Jk we set βi
k =

∑
l �=k til ≤ 0, αj

k =
∑

l �=k tjl ≥ 0,

and

(3) βk := min{βi
k, i ∈ Ik}, αk := max{αj

k, j ∈ Jk}.
Define Xk = −(N +1)ek +e. Choose N0 large enough such that for all N ≥ N0

and 1 ≤ i ≤ n,

(4) min T (Xk) = −Na + βk ≤ −Ntik +
∑
l �=k

til ≤ −Nb + αk = maxT (Xk).

We know that Xk ∼� Xr = −(N + 1)er + e, 1 ≤ r ≤ p and T is a linear
preserver of ∼�. Hence by (4), α := αk = αr and β := βk = βr, 1 ≤ r ≤ p.

Also, Xk ∼� −Nei + ej, i 	= j. For each N ≥ N0, there exists 1 ≤ h ≤ n

such that −Nthi + thj = min T (−Nei + ej) = min T (Xk) = −Na + β and for
each 1 ≤ i ≤ p, 1 ≤ j ≤ p and N ≥ N0, there exists 1 ≤ h ≤ n such that
−N(a−thi) = thj −β. It follows that thi = a, thj = β. Hence Pp(a, β) is a sub-
matrix of [T ]. Similarly, there exists N1, such that for each N ≥ N1, there exists
1 ≤ h ≤ n such that −Nthi+thj = maxT (−Nei+ej) = maxT (Xk) = −Nb+α

and −N(b − thi) = thj − α. Thus, thi = b and thj = α. Since 1 ≤ i 	= j ≤ p

was arbitrary, Pp(b, α) is a sub-matrix of [T ]. Therefore, Pp(a, β) and Pp(b, α)
are sub-matrices of [T ].
In the following example we will show that for all n ≥ p there exists T : R

p → R
n

which preservers ∼� .

Example 3.3. Let p ≤ n. Assume I is the p × p identity matrix and E is an
(n − p) × p row stochastic matrix. Define T : R

p → R
n by [T ] = [I/E]. By

Theorem 1.5, we know that T is a linear preserver of ≺� . Hence, by Lemma
1.8, T is a linear preserver of ∼�

Theorem 3.4. T : R
p → R

p, p ≥ 3 is a linear preserver of ∼� if and only if
TX = cPX, for some p × p permutation matrix P, c ∈ R and for all X ∈ R

p.

Proof. Let T be a linear preserver of ∼�, by Lemma 3.1 each column of [T ] has
at least, one entry equal to a and one entry equal to b. Also each row of [T ] has
at most, one entry equal to a and one entry equal to b. Since [T ] is p× p, then
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all rows and all columns of [T ] have exactly one entry equal to a and one entry
equal to b with all other entries equal to zero. Without loss of generality let
t11 = a, t12 = b and t1k = 0 for all k 	= 1, 2. Therefore maxT (e1− e2) = a−b,

but maxT (e1 − e3) = a. We know that T (e1 − e2) ∼� T (e1 − e3), since T is
a linear preserver of ∼� and (e1 − e2) ∼� (e1 − e3). Hence maxT (e1 − e2) =
maxT (e1 − e3) which is a − b = a. Therefore b = 0 and [T ] = aP for some
P ∈ P(p).
Conversely, Let Tx = cPx for all x ∈ R

p and P ∈ P(p). Since T is a linear
preserver of ∼� if and only if αT for α ∈ R is a linear preserver of ∼�, we can
assume c ≥ 0. Let x ∼� y and m = min x = min y and M = maxx = max y.

Obviously cm = min Tx = min Ty and cM = max Tx = maxTy. Therefore
Tx ∼� Ty.

By [6] we know that for p ≥ 3, T : R
p → R

pis a linear preserver of ≺� if and
only if T has the form x � aPx, for some a ∈ R and some P ∈ P(p).

Corollary 3.5. T : R
p → R

p, p ≥ 3 is a linear preserver of ∼� if and only if
T is a linear preserver of ≺� .

Problem. Let 3 ≤ p < n be given. It will be nice to characterize all linear
preservers of ∼� from R

p to R
n.
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